This article was coauthored by Sean Alexander, MS. Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
wikiHow marks an article as readerapproved once it receives enough positive feedback. This article received 72 testimonials and 94% of readers who voted found it helpful, earning it our readerapproved status.
This article has been viewed 555,293 times.
For some lucky individuals, being good at physics comes naturally. For the rest of us, however, getting a good grade in physics requires a significant amount of hard work. Luckily, by learning important foundational skills and practicing often, almost anyone can master their physics material. However, even more important than getting a good grade is the fact that a better understanding of physics may shed light on some of the seemingly mysterious forces that govern the way the world works.
Steps
Part 1
Part 1 of 3:Understanding Basic Physics Concepts

1Memorize basic constants. In physics, certain forces, like the accelerating force of gravity on earth, are assigned mathematical constants.^{[1] X Research source } This is simply a fancy way of saying that these forces are usually represented as the same number regardless of where or how they're used. It's a smart idea to memorize the most common constants (and their units) — often, they won't be provided on tests. Below are a few of the most frequentlyused constants in physics:
 Gravity (on earth): 9.81 meters/second^{2}
 Speed of light: 3 × 10^{8} meters/second
 Molar gas constant: 8.32 Joules/(mole × Kelvin)
 Avogadro's number: 6.02 × 10^{23} per mole
 Planck's Constant: 6.63 × 10^{34} Joules × seconds

2Memorize basic equations. In physics, the relationships between the many different forces acting in the universe are described with equations. Some of these equations are very simple, while some are enormously complex. Having the simplest equations memorized and knowing how to use them is critical when tackling both simple and complex problems. Even difficult and confusing problems are often solved by using several simple equations or modifying these simple equations so that they fit new situations. These basic equations are the easiest part of physics to learn, and if you know them well, the odds are that you will at least know some part of every complex problem you face. Just a few of the most important equations are:^{[2] X Research source }
 Velocity = Change in position/Change in time (v=dx/dt)
 Acceleration = Change in velocity/Change in time (a=dv/dt)
 Current velocity = Initial velocity + (Acceleration × time) (v=v_{0}+a×t)
 Force = Mass × acceleration (F=m×a)
 Kinetic energy = (1/2)Mass × velocity^{2} (K=(1/2)m×v)
 Work = Displacement × force (W=d×F)
 Power = Change in work/Change in time (P=dW/dt)
 Momentum = Mass × velocity (p=m×v)
Advertisement 
3Study the derivation of basic equations. Having your simple equations memorized is one thing — understanding why these equations work is another entirely. If you can, take time to learn how each basic physics equation is derived. This gives you a much clearer understanding of the relationship between the equations and makes you a more versatile problemssolver. Since you essentially understand how the equation "works", you'll be able to use it much more effectively than if it's simply a rote, memorized string of characters in your mind.
 For example, let's look at a very simple equation: Acceleration = Change in velocity/Change in time,^{[3] X Research source } or a = Delta(v)/Delta(t). Acceleration is the force that causes an object's velocity to change. If an object has an initial velocity of v_{0} at time t_{0} and a final velocity of v at time t, the object can be said to accelerate as it changes from v_{0} to v. Acceleration can't be instantaneous — no matter how fast it occurs, there will be some time difference between when the object is traveling at its initial velocity and when it reaches its final velocity. Thus, a = (v  v_{0}/t  t_{0}) = Delta(v)/Delta(t).

4Learn the math skills required to do physics problems. Math is often said to be "the language of physics." Becoming an expert in the fundamentals of math is a great way to improve your ability to master physics problems. Some complex physics equations even require specialized mathematical skills (like taking derivatives and integrals) to be solved. Below are just a few math topics that can help you perform physics problems, in order of complexity:
 Prealgebra and algebra (for basic equations and "find the unknown" problems)
 Trigonometry (for force diagrams, rotation problems, and angled systems)
 Geometry (for problems dealing with area, volume, etc.)
 Precalculus and calculus (for taking derivatives and integrals of physics equations — usually advanced topics)
 Linear algebra (for calculations involving vectors — usually advanced topics).
Advertisement
Part 2
Part 2 of 3:Using Scoreboosting Strategies

1Focus on the important information in every problem. Physics problems often contain "red herrings" — information that isn't needed to solve the problem. When reading a physics problem, identify the pieces of information that you are given, then determine what you are trying to solve for.^{[4] X Expert Source Sean Alexander, MSPhysics Tutor Expert Interview. 14 May 2020. } Write the equation(s) you'll need to solve the problem, then assign each piece of information in the problem to the appropriate variables. Ignore information that isn't needed, as this can slow you down and make the correct path for solving the problem more difficult to find.
 For example, let's say that we need to find the acceleration that a car experiences as its velocity changes over two seconds. If the car weighs 1,000 kilograms, starts moving at 9 m/s and ends at 22 m/s, we can say that v_{0} = 9 m/s, v = 22 m/s, m = 1,000 t = 2 s. As noted above, the standard acceleration equation is a = (v  v_{0}/t  t_{0}). Note that this doesn't take the object's mass into account, so we can ignore the fact that the car weighs 1,000 kg.
 Thus, we would solve as follows: a = (v  v_{0}/t  t_{0}) = ((22  9)/(2  0)) = (13/2) = 6.5 m/s^{2}

2Use the correct units for every problem. Forgetting to label your answer or using the incorrect units is a surefire way to miss easy points. To make sure you get full credit for whatever problem you're doing, be sure to label your answer with its correct units based on the type of information being expressed.^{[5] X Expert Source Sean Alexander, MSPhysics Tutor Expert Interview. 14 May 2020. } Some of the most commonlyused units for common measurements in physics are listed below — note that, as a general rule, physics problems almost always use metric/SI measurements:
 Mass: Grams or kilograms
 Force: Newtons
 Velocity: meters/second (sometimes kilometers/hour)
 Acceleration meters/second^{2}
 Energy/Work: Joules or kilojoules
 Power: Watts

3Don't forget small details (like friction, drag, etc.). Physics problems are usually models of realworld situations — that is, they simplify the actual way that things work to make the situation easier to understand. Sometimes, this means that forces that can change the outcome of a problem (like, for instance, friction) are deliberately left out of the problem. However, this is not always the case. If these minor details aren't explicitly left out of the problem and you have enough information to account for them in your answer, be sure to include them for the most accurate answer.
 For example, let's say that a problem asks you to find the rate that a 5 kilogram wooden block accelerates along a smooth floor if pushed with a force of 50 newtons. Since F = m × a, the answer may seem to be as simple as solving for a in the equation 50 = 5 × a. However, in the real world, the force of friction will act against the forward motion of the object, effectively reducing the force it's being pushed with. Leaving this out of the problem will result in an answer that has the block accelerating slightly faster than it actually would.

4Doublecheck your answers. An averagedifficulty physics problem can easily involve a dozen or so mathematical calculations. An error in any of these can cause your answer to be off, so pay close attention to your math as you work and, if you have time, doublecheck your answer at the end to make sure your math "adds up."^{[6] X Expert Source Sean Alexander, MSPhysics Tutor Expert Interview. 14 May 2020. }
 While simply redoing your work is one way to check your math, you may also want to use common sense to relate your problem to real life as a way of checking your answer. For example, if you're trying to find the momentum (mass × velocity) of an object moving in the forward direction, you wouldn't expect a negative answer, since mass can't be negative and velocity is only negative if it's in the "negative" direction (i.e., opposite the "forward" direction in your frame of reference). Thus, if you get a negative, answer, you've probably made an error in your calculations somewhere along the line.
Advertisement
Part 3
Part 3 of 3:Doing Your Best in Physics Class

1Read the topic before the lecture. Ideally, you shouldn't come across new physics concepts for the very first time in class. Instead, try, reading upcoming lessons in your textbook the day before they'll be covered in class.^{[7] X Research source } Don't fixate on the precise mathematics of the topic — at this stage, focus on grasping the general concepts and trying to grasp what is being discussed. This will give you a solid foundation of knowledge upon which you'll be able to apply the mathematical skills you'll learn in class.

2Pay attention during class. During class, the teacher will explain the concepts you encountered in your prereading and clarify any areas of the material that you don't understand well. Take notes and ask plenty of questions. Your teacher will probably go through the mathematics of the topic. When he or she does so, try to have a general idea of "what's happening" even if you don't remember the exact derivations of each equation — having this sort of "feel" for the material is a huge asset.
 If you have lingering questions after class, talk to your teacher. Try to make your questions as specific as possible — this shows the teacher that you were listening. If the teacher isn't busy, she or he will probably be able to schedule an appointment to go over the material with you and help you understand it.
 You could even ask your professor or teacher if they would be willing to let you record the lectures so that you can listen to them again later. This would allow you to ask for clarification on anything that is still unclear to you after relistening to the lecture.

3Review your notes at home. To finish off the task of studying and polish your physics knowledge, take a few moments to go over your notes as soon as you have a chance at home. Doing this will help you retain the knowledge you've gained from the day's class. The longer you wait after you take your notes to review them, the more difficult to remember they will be and the more "foreign" the concepts will seem, so be proactive and cement your knowledge by reviewing your notes at home.

4Solve practice questions. Just like math, writing, or programming, solving physics problems is a mental skill. The more you use this skill, the easier it will become. If you're struggling with physics, be sure to get plenty of practice solving problems. This will not only prepare you for exams but will help make many concepts clearer as you make your way through the material.
 If you're not happy with your grade in physics, don't be content to simply use the problems assigned in your homework for practice. Make the extra effort to complete problems you wouldn't normally encounter — these can be problems in your textbook that aren't assigned to you, free problems online, or even problems in physics practice books (usually sold at academic bookstores).

5Use the sources of help that are available to you. You don't have to try to endure a difficult physics course by yourself — depending on your schooling situation, there may be literally dozens of ways to get help. Seek out and use any help resources you need to get a better understanding of your physics material. Though some help resources can cost money, most students have at least a few free options available to them. Below are just a few ideas of who and what to seek out if you need physics help:
 Your teacher (via afterschool appointment)
 Your friends (via study groups and homework sessions)
 Tutors (either privatelyhired or as part of a school program)
 Thirdparty resources (like physics problem books, educational sites like Khan Academy, and so on)
Advertisement
Community Q&A
Did you know you can get premium answers for this article?
Unlock premium answers by supporting wikiHow

QuestionDo you really need to doublecheck every answer?Sean Alexander, MSSean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
Physics Tutor 
QuestionWhy are physics problems so complicated?Sean Alexander, MSSean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
Physics TutorThey're difficult because so many physics problems require multiple steps that you have to follow, and even the tiniest deviation from a step can cause your answer to be off. This is why it's so important that you understand the underlying principles behind why you're doing what you're doing! It's a lot harder to arrive at the right conclusion if you aren't aware of how you're navigating the problem. 
QuestionIs physics really that difficult?Sean Alexander, MSSean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
Physics Tutor 
QuestionI have a fear of failure in physics. How can I overcome this fear?Bess Ruff, MABess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group.
Environmental Scientist 
QuestionWhat is the best method for studying physics at home, and how can I prepare for exams?Bess Ruff, MABess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group.
Environmental ScientistReview your class notes at the end of every day when you get home to solidify concepts you learned in class that day. Prepare for exams by doing practice problems and focusing on areas that you have particular difficulty with. You might also ask your teacher/professor if they have any old exams they would make copies of so that you can get a sense for how they structure their tests. 
QuestionHow can I be a genius at school?wikiHow Staff EditorThis answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
Staff AnswerwikiHow Staff EditorStaff AnswerStudy hard and finish what is asked of you. Once that has been done, push yourself to learn beyond the school curriculum by being curious, innovative, inventive and fearless about taking your learning as far as you can. Embrace failure; it too is a form of learning, so try new things and ideas all the time. Ask lots of questions but equally, spend a lot of time thinking and working out things for yourself. Reverse engineer things to find out how they work. Rethink things to make them work better. Don't stick to just one set of subjects; aim to be a polymath by being good at math, science, arts, English, dance, sports and drama. Don't pigeonhole yourself; the best learned people have a diversity of knowledge drawn from a wide background. Finally, enjoy your journey of educational discovery; it's a treasure, not a chore. 
QuestionWhat are the basics of physics?wikiHow Staff EditorThis answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
Staff AnswerwikiHow Staff EditorStaff Answer 
QuestionHow can I be a master in maths?wikiHow Staff EditorThis answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
Staff AnswerwikiHow Staff EditorStaff AnswerMastering math is a combination of learning the fundamentals, practicing often and approach math with the right mindset to succeed. You'll find lots more help in the wikiHow: How to Be Good at Mathematics. 
QuestionHow can I learn chemistry?wikiHow Staff EditorThis answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
Staff AnswerwikiHow Staff EditorStaff AnswerSince this is a broad topic, it's best to read up on this. So, to get started in learning chemistry, check out the wikiHow: How to Learn Chemistry. 
QuestionLearning the concepts is easy but applying them in the numericals is very difficult. Why?Community AnswerIt is not so difficult to apply the concepts in numericals. What you can do is, highlight the part of the question which is asked. Try to focus on what approach or concept to be applied to solve it in one go. Don't be like "Ahhh... This question is too simple". Try to understand the meaning of the question. What people normally do is that they try to solve by applying something is not necessary, then when they don't get the answer they lose hope and the question seems difficult.
Video
Tips
 Discuss your notes and topics with your classmate or your friend. This will help both you and your classmate.Thanks!
 Learn the derivations.Thanks!
 Concentrate on the concepts. It always helps to form a mental "picture" of what's happening.Thanks!
 Develop your mathematical skills. Physics at an advanced level is mostly applied mathematics, especially calculus. Make sure you know how to set up an integral and subsequently solve it by substitution or by parts.Thanks!
 When solving problems, pay attention to detail. Don't forget to include friction in a calculation or take the moment of inertia about the right axis.Thanks!
References
 ↑ http://hyperphysics.phyastr.gsu.edu/hbase/Tables/funcon.html
 ↑ http://physics.info/equations/
 ↑ https://www.physicsclassroom.com/class/1DKin/Lesson1/Acceleration
 ↑ Sean Alexander, MS. Physics Tutor. Expert Interview. 14 May 2020.
 ↑ Sean Alexander, MS. Physics Tutor. Expert Interview. 14 May 2020.
 ↑ Sean Alexander, MS. Physics Tutor. Expert Interview. 14 May 2020.
 ↑ https://www2.le.ac.uk/offices/ld/resources/study/makingmostoflectures
About This Article
To do well in physics, start by reading the topic before the lecture, focusing on the general concepts to get a basic idea of what will be discussed in class. During the lecture, take detailed notes and ask a lot of questions to help clarify things you don’t understand very well. Next, memorize the basic constants that never change, such as the speed of light, as well as basic equations, like how to measure velocity. Additionally, use online study resources like the Khan Academy, or try forming study groups with other students. To learn more, like how to use the correct units for every physics problem, read on!
Reader Success Stories

"Thanks so much for this article. You don't know how much relief this article gave me and how it has changed my mindset to better understand physics and mastering the concepts and skills. I will surely apply these principles and study harder to become not just an A+ student, but have deeper knowledge of the course. "..." more