AI News, Machine Learning

Machine Learning

SUMMARY: Deep learning is a form of machine learning using a convolutional neural network architecture that shows tremendous promise for imaging applications.

Deep learning is a form of artificial intelligence, roughly modeled on the structure of neurons in the brain, which has shown tremendous promise in solving many problems in computer vision, natural language processing, and robotics.1 It has recently become the dominant form of machine learning, due to a convergence of theoretic advances, openly available computer software, and hardware with sufficient computational power.

Deep learning

Deep learning (also known as deep structured learning or hierarchical learning) is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms.

Deep learning architectures such as deep neural networks, deep belief networks and recurrent neural networks have been applied to fields including computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, bioinformatics, drug design and board game programs, where they have produced results comparable to and in some cases superior to human experts.[4][5][6]

Deep learning models are vaguely inspired by information processing and communication patterns in biological nervous systems yet have various differences from the structural and functional properties of biological brains (especially human brain), which make them incompatible with neuroscience evidences.[7][8][9]

Most modern deep learning models are based on an artificial neural network, although they can also include propositional formulas or latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep Boltzmann machines.[11]

No universally agreed upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep learning involves CAP depth >

For supervised learning tasks, deep learning methods obviate feature engineering, by translating the data into compact intermediate representations akin to principal components, and derive layered structures that remove redundancy in representation.

The universal approximation theorem concerns the capacity of feedforward neural networks with a single hidden layer of finite size to approximate continuous functions.[15][16][17][18][19]

By 1991 such systems were used for recognizing isolated 2-D hand-written digits, while recognizing 3-D objects was done by matching 2-D images with a handcrafted 3-D object model.

But while Neocognitron required a human programmer to hand-merge features, Cresceptron learned an open number of features in each layer without supervision, where each feature is represented by a convolution kernel.

In 1994, André de Carvalho, together with Mike Fairhurst and David Bisset, published experimental results of a multi-layer boolean neural network, also known as a weightless neural network, composed of a 3-layers self-organising feature extraction neural network module (SOFT) followed by a multi-layer classification neural network module (GSN), which were independently trained.

In 1995, Brendan Frey demonstrated that it was possible to train (over two days) a network containing six fully connected layers and several hundred hidden units using the wake-sleep algorithm, co-developed with Peter Dayan and Hinton.[39]

Simpler models that use task-specific handcrafted features such as Gabor filters and support vector machines (SVMs) were a popular choice in the 1990s and 2000s, because of ANNs' computational cost and a lack of understanding of how the brain wires its biological networks.

These methods never outperformed non-uniform internal-handcrafting Gaussian mixture model/Hidden Markov model (GMM-HMM) technology based on generative models of speech trained discriminatively.[45]

The principle of elevating 'raw' features over hand-crafted optimization was first explored successfully in the architecture of deep autoencoder on the 'raw' spectrogram or linear filter-bank features in the late 1990s,[48]

Many aspects of speech recognition were taken over by a deep learning method called long short-term memory (LSTM), a recurrent neural network published by Hochreiter and Schmidhuber in 1997.[50]

showed how a many-layered feedforward neural network could be effectively pre-trained one layer at a time, treating each layer in turn as an unsupervised restricted Boltzmann machine, then fine-tuning it using supervised backpropagation.[58]

The impact of deep learning in industry began in the early 2000s, when CNNs already processed an estimated 10% to 20% of all the checks written in the US, according to Yann LeCun.[67]

was motivated by the limitations of deep generative models of speech, and the possibility that given more capable hardware and large-scale data sets that deep neural nets (DNN) might become practical.

However, it was discovered that replacing pre-training with large amounts of training data for straightforward backpropagation when using DNNs with large, context-dependent output layers produced error rates dramatically lower than then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov Model (HMM) and also than more-advanced generative model-based systems.[59][70]

offering technical insights into how to integrate deep learning into the existing highly efficient, run-time speech decoding system deployed by all major speech recognition systems.[10][72][73]

In 2010, researchers extended deep learning from TIMIT to large vocabulary speech recognition, by adopting large output layers of the DNN based on context-dependent HMM states constructed by decision trees.[75][76][77][72]

In 2009, Nvidia was involved in what was called the “big bang” of deep learning, “as deep-learning neural networks were trained with Nvidia graphics processing units (GPUs).”[78]

In 2014, Hochreiter's group used deep learning to detect off-target and toxic effects of environmental chemicals in nutrients, household products and drugs and won the 'Tox21 Data Challenge' of NIH, FDA and NCATS.[87][88][89]

Although CNNs trained by backpropagation had been around for decades, and GPU implementations of NNs for years, including CNNs, fast implementations of CNNs with max-pooling on GPUs in the style of Ciresan and colleagues were needed to progress on computer vision.[80][81][34][90][2]

In November 2012, Ciresan et al.'s system also won the ICPR contest on analysis of large medical images for cancer detection, and in the following year also the MICCAI Grand Challenge on the same topic.[92]

In 2013 and 2014, the error rate on the ImageNet task using deep learning was further reduced, following a similar trend in large-scale speech recognition.

For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeled as 'cat' or 'no cat' and using the analytic results to identify cats in other images.

Over time, attention focused on matching specific mental abilities, leading to deviations from biology such as backpropagation, or passing information in the reverse direction and adjusting the network to reflect that information.

Neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.

Despite this number being several order of magnitude less than the number of neurons on a human brain, these networks can perform many tasks at a level beyond that of humans (e.g., recognizing faces, playing 'Go'[99]

The goal is that eventually, the network will be trained to decompose an image into features, identify trends that exist across all samples and classify new images by their similarities without requiring human input.[100]

The extra layers enable composition of features from lower layers, potentially modeling complex data with fewer units than a similarly performing shallow network.[11]

The training process can be guaranteed to converge in one step with a new batch of data, and the computational complexity of the training algorithm is linear with respect to the number of neurons involved.[116][117]

that involve multi-second intervals containing speech events separated by thousands of discrete time steps, where one time step corresponds to about 10 ms.

All major commercial speech recognition systems (e.g., Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google Now, Apple Siri, Baidu and iFlyTek voice search, and a range of Nuance speech products, etc.) are based on deep learning.[10][123][124][125]

DNNs have proven themselves capable, for example, of a) identifying the style period of a given painting, b) 'capturing' the style of a given painting and applying it in a visually pleasing manner to an arbitrary photograph, and c) generating striking imagery based on random visual input fields.[129][130]

Word embedding, such as word2vec, can be thought of as a representational layer in a deep learning architecture that transforms an atomic word into a positional representation of the word relative to other words in the dataset;

Finding the appropriate mobile audience for mobile advertising is always challenging, since many data points must be considered and assimilated before a target segment can be created and used in ad serving by any ad server.[162][163]

'Deep anti-money laundering detection system can spot and recognize relationships and similarities between data and, further down the road, learn to detect anomalies or classify and predict specific events'.

Deep learning is closely related to a class of theories of brain development (specifically, neocortical development) proposed by cognitive neuroscientists in the early 1990s.[167][168][169][170]

These developmental models share the property that various proposed learning dynamics in the brain (e.g., a wave of nerve growth factor) support the self-organization somewhat analogous to the neural networks utilized in deep learning models.

Like the neocortex, neural networks employ a hierarchy of layered filters in which each layer considers information from a prior layer (or the operating environment), and then passes its output (and possibly the original input), to other layers.

Other researchers have argued that unsupervised forms of deep learning, such as those based on hierarchical generative models and deep belief networks, may be closer to biological reality.[174][175]

researchers at The University of Texas at Austin (UT) developed a machine learning framework called Training an Agent Manually via Evaluative Reinforcement, or TAMER, which proposed new methods for robots or computer programs to learn how to perform tasks by interacting with a human instructor.[166]

Such techniques lack ways of representing causal relationships (...) have no obvious ways of performing logical inferences, and they are also still a long way from integrating abstract knowledge, such as information about what objects are, what they are for, and how they are typically used.

systems, like Watson (...) use techniques like deep learning as just one element in a very complicated ensemble of techniques, ranging from the statistical technique of Bayesian inference to deductive reasoning.'[192]

As an alternative to this emphasis on the limits of deep learning, one author speculated that it might be possible to train a machine vision stack to perform the sophisticated task of discriminating between 'old master' and amateur figure drawings, and hypothesized that such a sensitivity might represent the rudiments of a non-trivial machine empathy.[193]

In further reference to the idea that artistic sensitivity might inhere within relatively low levels of the cognitive hierarchy, a published series of graphic representations of the internal states of deep (20-30 layers) neural networks attempting to discern within essentially random data the images on which they were trained[195]

Learning a grammar (visual or linguistic) from training data would be equivalent to restricting the system to commonsense reasoning that operates on concepts in terms of grammatical production rules and is a basic goal of both human language acquisition[201]

Such a manipulation is termed an “adversarial attack.” In 2016 researchers used one ANN to doctor images in trial and error fashion, identify another's focal points and thereby generate images that deceived it.

Another group showed that certain psychedelic spectacles could fool a facial recognition system into thinking ordinary people were celebrities, potentially allowing one person to impersonate another.

ANNs can however be further trained to detect attempts at deception, potentially leading attackers and defenders into an arms race similar to the kind that already defines the malware defense industry.

ANNs have been trained to defeat ANN-based anti-malware software by repeatedly attacking a defense with malware that was continually altered by a genetic algorithm until it tricked the anti-malware while retaining its ability to damage the target.[203]

Computer Methods and Programs in Biomedicine

To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research;

to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.

Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice.

Deep Learning

He told Page, who had read an early draft, that he wanted to start a company to develop his ideas about how to build a truly intelligent computer: one that could understand language and then make inferences and decisions on its own.

The basic idea—that software can simulate the neocortex’s large array of neurons in an artificial “neural network”—is decades old, and it has led to as many disappointments as breakthroughs.

Last June, a Google deep-learning system that had been shown 10 million images from YouTube videos proved almost twice as good as any previous image recognition effort at identifying objects such as cats.

In October, Microsoft chief research officer Rick Rashid wowed attendees at a lecture in China with a demonstration of speech software that transcribed his spoken words into English text with an error rate of 7 percent, translated them into Chinese-language text, and then simulated his own voice uttering them in Mandarin.

Hinton, who will split his time between the university and Google, says he plans to “take ideas out of this field and apply them to real problems” such as image recognition, search, and natural-language understanding, he says.

Extending deep learning into applications beyond speech and image recognition will require more conceptual and software breakthroughs, not to mention many more advances in processing power.

Neural networks, developed in the 1950s not long after the dawn of AI research, looked promising because they attempted to simulate the way the brain worked, though in greatly simplified form.

These weights determine how each simulated neuron responds—with a mathematical output between 0 and 1—to a digitized feature such as an edge or a shade of blue in an image, or a particular energy level at one frequency in a phoneme, the individual unit of sound in spoken syllables.

Programmers would train a neural network to detect an object or phoneme by blitzing the network with digitized versions of images containing those objects or sound waves containing those phonemes.

The eventual goal of this training was to get the network to consistently recognize the patterns in speech or sets of images that we humans know as, say, the phoneme “d” or the image of a dog.

This is much the same way a child learns what a dog is by noticing the details of head shape, behavior, and the like in furry, barking animals that other people call dogs.

Once that layer accurately recognizes those features, they’re fed to the next layer, which trains itself to recognize more complex features, like a corner or a combination of speech sounds.

Because the multiple layers of neurons allow for more precise training on the many variants of a sound, the system can recognize scraps of sound more reliably, especially in noisy environments such as subway platforms.

Hawkins, author of On Intelligence, a 2004 book on how the brain works and how it might provide a guide to building intelligent machines, says deep learning fails to account for the concept of time.

Brains process streams of sensory data, he says, and human learning depends on our ability to recall sequences of patterns: when you watch a video of a cat doing something funny, it’s the motion that matters, not a series of still images like those Google used in its experiment.

In high school, he wrote software that enabled a computer to create original music in various classical styles, which he demonstrated in a 1965 appearance on the TV show I’ve Got a Secret.

Since then, his inventions have included several firsts—a print-to-speech reading machine, software that could scan and digitize printed text in any font, music synthesizers that could re-create the sound of orchestral instruments, and a speech recognition system with a large vocabulary.

This isn’t his immediate goal at Google, but it matches that of Google cofounder Sergey Brin, who said in the company’s early days that he wanted to build the equivalent of the sentient computer HAL in 2001: A Space Odyssey—except one that wouldn’t kill people.

“My mandate is to give computers enough understanding of natural language to do useful things—do a better job of search, do a better job of answering questions,” he says.

queries as quirky as “a long, tiresome speech delivered by a frothy pie topping.” (Watson’s correct answer: “What is a meringue harangue?”) Kurzweil isn’t focused solely on deep learning, though he says his approach to speech recognition is based on similar theories about how the brain works.

“That’s not a project I think I’ll ever finish.” Though Kurzweil’s vision is still years from reality, deep learning is likely to spur other applications beyond speech and image recognition in the nearer term.

Microsoft’s Peter Lee says there’s promising early research on potential uses of deep learning in machine vision—technologies that use imaging for applications such as industrial inspection and robot guidance.

What Is Deep Learning?

With tools and functions for managing large data sets, MATLAB also offers specialized toolboxes for working with machine learning, neural networks, computer vision, and automated driving.

In addition, MATLAB enables domain experts to do deep learning – instead of handing the task over to data scientists who may not know your industry or application.

MATLAB enables users to interactively label objects within images and can automate ground truth labeling within videos for training and testing deep learning models.

It offers tools and functions for deep learning, and also for a range of domains that feed into deep learning algorithms, such as signal processing, computer vision, and data analytics.

What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?

This is the first of a multi-part series explaining the fundamentals of deep learning by long-time tech journalist Michael Copeland.

The easiest way to think of their relationship is to visualize them as concentric circles with AI — the idea that came first — the largest, then machine learning — which blossomed later, and finally deep learning — which is driving today’s AI explosion —  fitting inside both.

It also has to do with the simultaneous one-two punch of practically infinite storage and a flood of data of every stripe (that whole Big Data movement) – images, text, transactions, mapping data, you name it.

Let’s walk through how computer scientists have moved from something of a bust — until 2012 — to a boom that has unleashed applications used by hundreds of millions of people every day.

Back in that summer of ’56 conference the dream of those AI pioneers was to construct complex machines — enabled by emerging computers — that possessed the same characteristics of human intelligence.

So rather than hand-coding software routines with a specific set of instructions to accomplish a particular task, the machine is “trained” using large amounts of data and algorithms that give it the ability to learn how to perform the task.

Machine learning came directly from minds of the early AI crowd, and the algorithmic approaches over the years included decision tree learning, inductive logic programming.

But, unlike a biological brain where any neuron can connect to any other neuron within a certain physical distance, these artificial neural networks have discrete layers, connections, and directions of data propagation.

Attributes of a stop sign image are chopped up and “examined” by the neurons —  its octogonal shape, its fire-engine red color, its distinctive letters, its traffic-sign size, and its motion or lack thereof.

In our example the system might be 86% confident the image is a stop sign, 7% confident it’s a speed limit sign, and 5% it’s a kite stuck in a tree ,and so on — and the network architecture then tells the neural network whether it is right or not.

Still, a small heretical research group led by Geoffrey Hinton at the University of Toronto kept at it, finally parallelizing the algorithms for supercomputers to run and proving the concept, but it wasn’t until GPUs were deployed in the effort that the promise was realized.

It needs to see hundreds of thousands, even millions of images, until the weightings of the neuron inputs are tuned so precisely that it gets the answer right practically every time — fog or no fog, sun or rain.

Today, image recognition by machines trained via deep learning in some scenarios is better than humans, and that ranges from cats to identifying indicators for cancer in blood and tumors in MRI scans.

Lecture 15 | Efficient Methods and Hardware for Deep Learning

In Lecture 15, guest lecturer Song Han discusses algorithms and specialized hardware that can be used to accelerate training and inference of deep learning ...

How Does Deep Learning Work? | Two Minute Papers #24

Artificial neural networks provide us incredibly powerful tools in machine learning that are useful for a variety of tasks ranging from image classification to voice ...

What is Machine Learning? Methods, Jobs and Skills

Machine learning is part of artificial intelligence field and is much in demand skill for data science and related fields. This video helps to develop understanding ...

How Machines Learn

How do all the algorithms around us learn to do their jobs? Bot Wallpapers on Patreon: Discuss this video: ..

Lecture 3 | Loss Functions and Optimization

Lecture 3 continues our discussion of linear classifiers. We introduce the idea of a loss function to quantify our unhappiness with a model's predictions, and ...

Panel Discussion: Applications of Machine Learning

Dr. Yoshua Bengio, Professor, Department of Computer Science & Operations Research, Université de Montréal Dr. Fei-Fei Li, Associate Professor, Computer ...

The Best Way to Prepare a Dataset Easily

In this video, I go over the 3 steps you need to prepare a dataset to be fed into a machine learning model. (selecting the data, processing it, and transforming it).

Turning 2D into depth images

Most cameras just record colour but now the 3D shapes of objects, captured through only a single lens, can be accurately estimated using new software ...

Deep Learning for Images, Soundwaves, and Character Strings

Deep neural networks that contain many layers of non-linear feature detectors fell out of favor because it was hard to get enough labeled data to train many ...

Lecture 2 | Image Classification

Lecture 2 formalizes the problem of image classification. We discuss the inherent difficulties of image classification, and introduce data-driven approaches.