AI News, Machine Learning

Machine Learning

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models.

The book builds carefully from the basic classical methods  to  the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for  different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.

Machine learning

Machine learning is a field of computer science that often uses statistical techniques to give computers the ability to 'learn' (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.[1] The name machine learning was coined in 1959 by Arthur Samuel.[2] Evolved from the study of pattern recognition and computational learning theory in artificial intelligence,[3] machine learning explores the study and construction of algorithms that can learn from and make predictions on data[4] – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions,[5]:2 through building a model from sample inputs.

Mitchell provided a widely quoted, more formal definition of the algorithms studied in the machine learning field: 'A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.'[13] This definition of the tasks in which machine learning is concerned offers a fundamentally operational definition rather than defining the field in cognitive terms.

Machine learning tasks are typically classified into two broad categories, depending on whether there is a learning 'signal' or 'feedback' available to a learning system: Another categorization of machine learning tasks arises when one considers the desired output of a machine-learned system:[5]:3 Among other categories of machine learning problems, learning to learn learns its own inductive bias based on previous experience.

Developmental learning, elaborated for robot learning, generates its own sequences (also called curriculum) of learning situations to cumulatively acquire repertoires of novel skills through autonomous self-exploration and social interaction with human teachers and using guidance mechanisms such as active learning, maturation, motor synergies, and imitation.

Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation.[17]:488 By 1980, expert systems had come to dominate AI, and statistics was out of favor.[18] Work on symbolic/knowledge-based learning did continue within AI, leading to inductive logic programming, but the more statistical line of research was now outside the field of AI proper, in pattern recognition and information retrieval.[17]:708–710;

Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

Much of the confusion between these two research communities (which do often have separate conferences and separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, while in knowledge discovery and data mining (KDD) the key task is the discovery of previously unknown knowledge.

Jordan, the ideas of machine learning, from methodological principles to theoretical tools, have had a long pre-history in statistics.[20] He also suggested the term data science as a placeholder to call the overall field.[20] Leo Breiman distinguished two statistical modelling paradigms: data model and algorithmic model,[21] wherein 'algorithmic model' means more or less the machine learning algorithms like Random forest.

Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into (high-dimensional) vectors.[27] Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features.

In machine learning, genetic algorithms found some uses in the 1980s and 1990s.[31][32] Conversely, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.[33] Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply, knowledge.

They seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions.[35] Applications for machine learning include: In 2006, the online movie company Netflix held the first 'Netflix Prize' competition to find a program to better predict user preferences and improve the accuracy on its existing Cinematch movie recommendation algorithm by at least 10%.

A joint team made up of researchers from AT&T Labs-Research in collaboration with the teams Big Chaos and Pragmatic Theory built an ensemble model to win the Grand Prize in 2009 for $1 million.[41] Shortly after the prize was awarded, Netflix realized that viewers' ratings were not the best indicators of their viewing patterns ('everything is a recommendation') and they changed their recommendation engine accordingly.[42] In 2010 The Wall Street Journal wrote about the firm Rebellion Research and their use of Machine Learning to predict the financial crisis.

[43] In 2012, co-founder of Sun Microsystems Vinod Khosla predicted that 80% of medical doctors jobs would be lost in the next two decades to automated machine learning medical diagnostic software.[44] In 2014, it has been reported that a machine learning algorithm has been applied in Art History to study fine art paintings, and that it may have revealed previously unrecognized influences between artists.[45] Although machine learning has been very transformative in some fields, effective machine learning is difficult because finding patterns is hard and often not enough training data are available;

as a result, machine-learning programs often fail to deliver.[46][47] Classification machine learning models can be validated by accuracy estimation techniques like the Holdout method, which splits the data in a training and test set (conventionally 2/3 training set and 1/3 test set designation) and evaluates the performance of the training model on the test set.

Systems which are trained on datasets collected with biases may exhibit these biases upon use (algorithmic bias), thus digitizing cultural prejudices.[50] For example, using job hiring data from a firm with racist hiring policies may lead to a machine learning system duplicating the bias by scoring job applicants against similarity to previous successful applicants.[51][52] Responsible collection of data and documentation of algorithmic rules used by a system thus is a critical part of machine learning.

There is huge potential for machine learning in health care to provide professionals a great tool to diagnose, medicate, and even plan recovery paths for patients, but this will not happen until the personal biases mentioned previously, and these 'greed' biases are addressed.[54] Software suites containing a variety of machine learning algorithms include the following :

Machine Learning: A Bayesian and Optimization Perspective (Net Developers) 1st Edition

'Overall, this text is well organized and full of details suitable for advanced graduate and postgraduate courses, as well as scholars…' --Computing Reviews 'Machine Learning: A Bayesian and Optimization Perspective', Academic Press, 2105, by Sergios Theodoridis is a wonderful book, up to date and rich in detail.

It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era.

The chapter presented the material with an optimal mix of theoretical and practical contents in very clear manner and with information for a wide range of readers, from newcomers to more advanced readers.

The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists.

'Overall, this text is well organized and full of details suitable for advanced graduate and postgraduate courses, as well as scholars…' --Computing Reviews 'Machine Learning: A Bayesian and Optimization Perspective', Academic Press, 2105, by Sergios Theodoridis is a wonderful book, up to date and rich in detail.

It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era.

The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists.

Machine Learning

'Overall, this text is well organized and full of details suitable for advanced graduate and postgraduate courses, as well as scholars…' --Computing Reviews

It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era.

The chapter presented the material with an optimal mix of theoretical and practical contents in very clear manner and with information for a wide range of readers, from newcomers to more advanced readers.

'As someone who has taught graduate courses in pattern recognition for over 35 years, I have always looked for a rigorous book that is current and appealing to students with widely varying backgrounds. The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists.

It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era.

'As someone who has taught graduate courses in pattern recognition for over 35 years, I have always looked for a rigorous book that is current and appealing to students with widely varying backgrounds. The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists.

Modeling Science: Dynamic Topic Models of Scholarly Research

Google Tech Talks May 24, 2007 ABSTRACT A surge of recent research in machine learning and statistics has developed new techniques for finding patterns of ...

Automatic Speech Recognition - An Overview

An overview of how Automatic Speech Recognition systems work and some of the challenges. See more on this video at ...

Causal Inference

Dr. Joseph Hogan from Brown University presents a lecture titled "Causal Inference" View Slides ...

Domain Adaptation with Structural Correspondence Learning

Google Tech Talks September, 5 2007 ABSTRACT Statistical language processing tools are being applied to an ever-wider and more varied range of linguistic ...

Mod-01 Lec-06 Noisy Channel: Argmax Based Computation

Natural Language Processing by Prof. Pushpak Bhattacharyya, Department of Computer science & Engineering,IIT Bombay.For more details on NPTEL visit ...

Small Deep Neural Networks - Their Advantages, and Their Design

Deep neural networks (DNNs) have led to significant improvements to the accuracy of machine-learning applications. For many problems, such as object ...

Mod-01 Lec-01 Introduction to Statistical Pattern Recognition

Pattern Recognition by Prof. P.S. Sastry, Department of Electronics & Communication Engineering, IISc Bangalore. For more details on NPTEL visit ...

Data Wrangling Normalization & Preprocessing: Part II Text

Dr. Sanda Harabagiu from University of Texas at Dallas presents a lecture on "Data Wrangling, Normalization & Preprocessing: Part II Text." Lecture Abstract ...

Towards Machines that Perceive and Communicate

Kevin Murphy (Google Research) Abstract: In this talk, I summarize some recent work in my group related to visual scene understanding and "grounded" ...

"Extracting Social Meaning from Language" - Dan Jurafsky

Dan Jurafsky (Stanford University) presents the inaugural Fillmore Lecture at the 2015 LSA Linguistic Institute. John Rickford, the president of the LSA, ...