AI News, Big Bets on A.I. Open a New Frontier for Chip Start-Ups, Too

Big Bets on A.I. Open a New Frontier for Chip Start-Ups, Too

Researchers at places like Microsoft and Google, which has built its own chip just for A.I., “train” neural networks by extreme trial and error, testing the algorithms across vast numbers of chips for hours and even days on end.

Today, Nvidia’s G.P.U.s can efficiently execute all the tiny calculations that go into training neural networks, but shuttling data between these chips is still inefficient, said Scott Gray, who was an engineer at Nervana before joining OpenAI, an artificial intelligence lab whose founder include Tesla’s chief executive, Elon Musk.

At Toyota, autonomous car prototypes are using neural networks as a way of identifying pedestrians, signs and other objects on the road.

The Dark Secret at the Heart of AI

Last year, a strange self-driving car was released onto the quiet roads of Monmouth County, New Jersey.

The experimental vehicle, developed by researchers at the chip maker Nvidia, didn’t look different from other autonomous cars, but it was unlike anything demonstrated by Google, Tesla, or General Motors, and it showed the rising power of artificial intelligence.

Information from the vehicle’s sensors goes straight into a huge network of artificial neurons that process the data and then deliver the commands required to operate the steering wheel, the brakes, and other systems.

The car’s underlying AI technology, known as deep learning, has proved very powerful at solving problems in recent years, and it has been widely deployed for tasks like image captioning, voice recognition, and language translation.

There is now hope that the same techniques will be able to diagnose deadly diseases, make million-dollar trading decisions, and do countless other things to transform whole industries.

But this won’t happen—or shouldn’t happen—unless we find ways of making techniques like deep learning more understandable to their creators and accountable to their users.

But banks, the military, employers, and others are now turning their attention to more complex machine-learning approaches that could make automated decision-making altogether inscrutable.

“Whether it’s an investment decision, a medical decision, or maybe a military decision, you don’t want to just rely on a ‘black box’ method.” There’s already an argument that being able to interrogate an AI system about how it reached its conclusions is a fundamental legal right.

The resulting program, which the researchers named Deep Patient, was trained using data from about 700,000 individuals, and when tested on new records, it proved incredibly good at predicting disease.

Without any expert instruction, Deep Patient had discovered patterns hidden in the hospital data that seemed to indicate when people were on the way to a wide range of ailments, including cancer of the liver.

If something like Deep Patient is actually going to help doctors, it will ideally give them the rationale for its prediction, to reassure them that it is accurate and to justify, say, a change in the drugs someone is being prescribed.

Many thought it made the most sense to build machines that reasoned according to rules and logic, making their inner workings transparent to anyone who cared to examine some code.

But it was not until the start of this decade, after several clever tweaks and refinements, that very large—or “deep”—neural networks demonstrated dramatic improvements in automated perception.

It has given computers extraordinary powers, like the ability to recognize spoken words almost as well as a person could, a skill too complex to code into the machine by hand.

The same approach can be applied, roughly speaking, to other inputs that lead a machine to teach itself: the sounds that make up words in speech, the letters and words that create sentences in text, or the steering-wheel movements required for driving.

The resulting images, produced by a project known as Deep Dream, showed grotesque, alien-like animals emerging from clouds and plants, and hallucinatory pagodas blooming across forests and mountain ranges.

In 2015, Clune’s group showed how certain images could fool such a network into perceiving things that aren’t there, because the images exploit the low-level patterns the system searches for.

The images that turn up are abstract (imagine an impressionistic take on a flamingo or a school bus), highlighting the mysterious nature of the machine’s perceptual abilities.

It is the interplay of calculations inside a deep neural network that is crucial to higher-level pattern recognition and complex decision-making, but those calculations are a quagmire of mathematical functions and variables.

“But once it becomes very large, and it has thousands of units per layer and maybe hundreds of layers, then it becomes quite un-understandable.” In the office next to Jaakkola is Regina Barzilay, an MIT professor who is determined to apply machine learning to medicine.

The diagnosis was shocking in itself, but Barzilay was also dismayed that cutting-edge statistical and machine-learning methods were not being used to help with oncological research or to guide patient treatment.

She envisions using more of the raw data that she says is currently underutilized: “imaging data, pathology data, all this information.” How well can we get along with machines that are

After she finished cancer treatment last year, Barzilay and her students began working with doctors at Massachusetts General Hospital to develop a system capable of mining pathology reports to identify patients with specific clinical characteristics that researchers might want to study.

Barzilay and her students are also developing a deep-learning algorithm capable of finding early signs of breast cancer in mammogram images, and they aim to give this system some ability to explain its reasoning, too.

The U.S. military is pouring billions into projects that will use machine learning to pilot vehicles and aircraft, identify targets, and help analysts sift through huge piles of intelligence data.

A silver-haired veteran of the agency who previously oversaw the DARPA project that eventually led to the creation of Siri, Gunning says automation is creeping into countless areas of the military.

But soldiers probably won’t feel comfortable in a robotic tank that doesn’t explain itself to them, and analysts will be reluctant to act on information without some reasoning.

A chapter of Dennett’s latest book, From Bacteria to Bach and Back, an encyclopedic treatise on consciousness, suggests that a natural part of the evolution of intelligence itself is the creation of systems capable of performing tasks their creators do not know how to do.

But since there may be no perfect answer, we should be as cautious of AI explanations as we are of each other’s—no matter how clever a machine seems.“If it can’t do better than us at explaining what it’s doing,” he says, “then don’t trustit.”

Artificial neural network

Artificial neural networks (ANN) or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains.[1]

For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeled as 'cat' or 'no cat' and using the results to identify cats in other images.

An ANN is based on a collection of connected units or nodes called artificial neurons which loosely model the neurons in a biological brain.

In common ANN implementations, the signal at a connection between artificial neurons is a real number, and the output of each artificial neuron is computed by some non-linear function of the sum of its inputs.

Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times.

Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.

(1943) created a computational model for neural networks based on mathematics and algorithms called threshold logic.

With mathematical notation, Rosenblatt described circuitry not in the basic perceptron, such as the exclusive-or circuit that could not be processed by neural networks at the time.[8]

In 1959, a biological model proposed by Nobel laureates Hubel and Wiesel was based on their discovery of two types of cells in the primary visual cortex: simple cells and complex cells.[9]

Much of artificial intelligence had focused on high-level (symbolic) models that are processed by using algorithms, characterized for example by expert systems with knowledge embodied in if-then rules, until in the late 1980s research expanded to low-level (sub-symbolic) machine learning, characterized by knowledge embodied in the parameters of a cognitive model.[citation needed]

key trigger for renewed interest in neural networks and learning was Werbos's (1975) backpropagation algorithm that effectively solved the exclusive-or problem by making the training of multi-layer networks feasible and efficient.

Support vector machines and other, much simpler methods such as linear classifiers gradually overtook neural networks in machine learning popularity.

The vanishing gradient problem affects many-layered feedforward networks that used backpropagation and also recurrent neural networks (RNNs).[21][22]

As errors propagate from layer to layer, they shrink exponentially with the number of layers, impeding the tuning of neuron weights that is based on those errors, particularly affecting deep networks.

To overcome this problem, Schmidhuber adopted a multi-level hierarchy of networks (1992) pre-trained one level at a time by unsupervised learning and fine-tuned by backpropagation.[23]

(2006) proposed learning a high-level representation using successive layers of binary or real-valued latent variables with a restricted Boltzmann machine[25]

Once sufficiently many layers have been learned, the deep architecture may be used as a generative model by reproducing the data when sampling down the model (an 'ancestral pass') from the top level feature activations.[26][27]

In 2012, Ng and Dean created a network that learned to recognize higher-level concepts, such as cats, only from watching unlabeled images taken from YouTube videos.[28]

Earlier challenges in training deep neural networks were successfully addressed with methods such as unsupervised pre-training, while available computing power increased through the use of GPUs and distributed computing.

for very large scale principal components analyses and convolution may create a new class of neural computing because they are fundamentally analog rather than digital (even though the first implementations may use digital devices).[30]

in Schmidhuber's group showed that despite the vanishing gradient problem, GPUs makes back-propagation feasible for many-layered feedforward neural networks.

Between 2009 and 2012, recurrent neural networks and deep feedforward neural networks developed in Schmidhuber's research group won eight international competitions in pattern recognition and machine learning.[32][33]

Researchers demonstrated (2010) that deep neural networks interfaced to a hidden Markov model with context-dependent states that define the neural network output layer can drastically reduce errors in large-vocabulary speech recognition tasks such as voice search.

A team from his lab won a 2012 contest sponsored by Merck to design software to help find molecules that might identify new drugs.[46]

As of 2011[update], the state of the art in deep learning feedforward networks alternated between convolutional layers and max-pooling layers,[41][47]

Artificial neural networks were able to guarantee shift invariance to deal with small and large natural objects in large cluttered scenes, only when invariance extended beyond shift, to all ANN-learned concepts, such as location, type (object class label), scale, lighting and others.

An artificial neural network is a network of simple elements called artificial neurons, which receive input, change their internal state (activation) according to that input, and produce output depending on the input and activation.

An artificial neuron mimics the working of a biophysical neuron with inputs and outputs, but is not a biological neuron model.

The network forms by connecting the output of certain neurons to the input of other neurons forming a directed, weighted graph.

j

i

j

Sometimes a bias term added to total weighted sum of inputs to serve as threshold to shift the activation function.[52]

j

i

The learning rule is a rule or an algorithm which modifies the parameters of the neural network, in order for a given input to the network to produce a favored output.

A common use of the phrase 'ANN model' is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons or their connectivity).

g

i

(

∑

i

w

i

g

i

(

x

)

)

(commonly referred to as the activation function[54]) is some predefined function, such as the hyperbolic tangent or sigmoid function or softmax function or rectifier function.

g

i

g

1

g

2

g

n

f

∗

f

∗

f

∗

is an important concept in learning, as it is a measure of how far away a particular solution is from an optimal solution to the problem to be solved.

For applications where the solution is data dependent, the cost must necessarily be a function of the observations, otherwise the model would not relate to the data.

[

(

f

(

x

)

−

y

)

2

]

D

D

C

^

1

N

∑

i

=

1

N

x

i

y

i

)

2

D

While it is possible to define an ad hoc cost function, frequently a particular cost (function) is used, either because it has desirable properties (such as convexity) or because it arises naturally from a particular formulation of the problem (e.g., in a probabilistic formulation the posterior probability of the model can be used as an inverse cost).

In 1970, Linnainmaa finally published the general method for automatic differentiation (AD) of discrete connected networks of nested differentiable functions.[63][64]

In 1986, Rumelhart, Hinton and Williams noted that this method can generate useful internal representations of incoming data in hidden layers of neural networks.[70]

The choice of the cost function depends on factors such as the learning type (supervised, unsupervised, reinforcement, etc.) and the activation function.

For example, when performing supervised learning on a multiclass classification problem, common choices for the activation function and cost function are the softmax function and cross entropy function, respectively.

j

exp

⁡

(

x

j

)

∑

k

exp

⁡

(

x

k

)

j

j

k

j

j

j

j

j

The network is trained to minimize L2 error for predicting the mask ranging over the entire training set containing bounding boxes represented as masks.

the cost function is related to the mismatch between our mapping and the data and it implicitly contains prior knowledge about the problem domain.[78]

commonly used cost is the mean-squared error, which tries to minimize the average squared error between the network's output,

Minimizing this cost using gradient descent for the class of neural networks called multilayer perceptrons (MLP), produces the backpropagation algorithm for training neural networks.

Tasks that fall within the paradigm of supervised learning are pattern recognition (also known as classification) and regression (also known as function approximation).

The supervised learning paradigm is also applicable to sequential data (e.g., for hand writing, speech and gesture recognition).

This can be thought of as learning with a 'teacher', in the form of a function that provides continuous feedback on the quality of solutions obtained thus far.

The cost function is dependent on the task (the model domain) and any a priori assumptions (the implicit properties of the model, its parameters and the observed variables).

)

2

whereas in statistical modeling, it could be related to the posterior probability of the model given the data (note that in both of those examples those quantities would be maximized rather than minimized).

y

t

x

t

c

t

The aim is to discover a policy for selecting actions that minimizes some measure of a long-term cost, e.g., the expected cumulative cost.

s

1

,

.

.

.

,

s

n

a

1

,

.

.

.

,

a

m

c

t

|

s

t

x

t

|

s

t

s

t

+

1

|

s

t

a

t

because of the ability of Artificial neural networks to mitigate losses of accuracy even when reducing the discretization grid density for numerically approximating the solution of the original control problems.

Tasks that fall within the paradigm of reinforcement learning are control problems, games and other sequential decision making tasks.

Training a neural network model essentially means selecting one model from the set of allowed models (or, in a Bayesian framework, determining a distribution over the set of allowed models) that minimizes the cost.

This is done by simply taking the derivative of the cost function with respect to the network parameters and then changing those parameters in a gradient-related direction.

convolutional neural network (CNN) is a class of deep, feed-forward networks, composed of one or more convolutional layers with fully connected layers (matching those in typical Artificial neural networks) on top.

recent development has been that of Capsule Neural Network (CapsNet), the idea behind which is to add structures called capsules to a CNN and to reuse output from several of those capsules to form more stable (with respect to various perturbations) representations for higher order capsules.[102]

can find an RNN weight matrix that maximizes the probability of the label sequences in a training set, given the corresponding input sequences.

provide a framework for efficiently trained models for hierarchical processing of temporal data, while enabling the investigation of the inherent role of RNN layered composition.[clarification needed]

This is particularly helpful when training data are limited, because poorly initialized weights can significantly hinder model performance.

that integrate the various and usually different filters (preprocessing functions) into its many layers and to dynamically rank the significance of the various layers and functions relative to a given learning task.

This grossly imitates biological learning which integrates various preprocessors (cochlea, retina, etc.) and cortexes (auditory, visual, etc.) and their various regions.

Its deep learning capability is further enhanced by using inhibition, correlation and its ability to cope with incomplete data, or 'lost' neurons or layers even amidst a task.

The link-weights allow dynamic determination of innovation and redundancy, and facilitate the ranking of layers, of filters or of individual neurons relative to a task.

LAMSTAR had a much faster learning speed and somewhat lower error rate than a CNN based on ReLU-function filters and max pooling, in 20 comparative studies.[139]

These applications demonstrate delving into aspects of the data that are hidden from shallow learning networks and the human senses, such as in the cases of predicting onset of sleep apnea events,[131]

The whole process of auto encoding is to compare this reconstructed input to the original and try to minimize the error to make the reconstructed value as close as possible to the original.

with a specific approach to good representation, a good representation is one that can be obtained robustly from a corrupted input and that will be useful for recovering the corresponding clean input.

x

~

x

~

x

~

x

~

x

~

of the first denoising auto encoder is learned and used to uncorrupt the input (corrupted input), the second level can be trained.[145]

Once the stacked auto encoder is trained, its output can be used as the input to a supervised learning algorithm such as support vector machine classifier or a multi-class logistic regression.[145]

It formulates the learning as a convex optimization problem with a closed-form solution, emphasizing the mechanism's similarity to stacked generalization.[149]

Each block estimates the same final label class y, and its estimate is concatenated with original input X to form the expanded input for the next block.

Thus, the input to the first block contains the original data only, while downstream blocks' input adds the output of preceding blocks.

It offers two important improvements: it uses higher-order information from covariance statistics, and it transforms the non-convex problem of a lower-layer to a convex sub-problem of an upper-layer.[151]

TDSNs use covariance statistics in a bilinear mapping from each of two distinct sets of hidden units in the same layer to predictions, via a third-order tensor.

The need for deep learning with real-valued inputs, as in Gaussian restricted Boltzmann machines, led to the spike-and-slab RBM (ssRBM), which models continuous-valued inputs with strictly binary latent variables.[155]

One of these terms enables the model to form a conditional distribution of the spike variables by marginalizing out the slab variables given an observation.

However, these architectures are poor at learning novel classes with few examples, because all network units are involved in representing the input (a distributed representation) and must be adjusted together (high degree of freedom).

It is a full generative model, generalized from abstract concepts flowing through the layers of the model, which is able to synthesize new examples in novel classes that look 'reasonably' natural.

h

(

1

)

deep predictive coding network (DPCN) is a predictive coding scheme that uses top-down information to empirically adjust the priors needed for a bottom-up inference procedure by means of a deep, locally connected, generative model.

DPCNs predict the representation of the layer, by using a top-down approach using the information in upper layer and temporal dependencies from previous states.[173]

For example, in sparse distributed memory or hierarchical temporal memory, the patterns encoded by neural networks are used as addresses for content-addressable memory, with 'neurons' essentially serving as address encoders and decoders.

Preliminary results demonstrate that neural Turing machines can infer simple algorithms such as copying, sorting and associative recall from input and output examples.

Approaches that represent previous experiences directly and use a similar experience to form a local model are often called nearest neighbour or k-nearest neighbors methods.[188]

Unlike sparse distributed memory that operates on 1000-bit addresses, semantic hashing works on 32 or 64-bit addresses found in a conventional computer architecture.

These models have been applied in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base and the output is a textual response.[193]

While training extremely deep (e.g., 1 million layers) neural networks might not be practical, CPU-like architectures such as pointer networks[195]

overcome this limitation by using external random-access memory and other components that typically belong to a computer architecture such as registers, ALU and pointers.

The key characteristic of these models is that their depth, the size of their short-term memory, and the number of parameters can be altered independently – unlike models like LSTM, whose number of parameters grows quadratically with memory size.

In that work, an LSTM RNN or CNN was used as an encoder to summarize a source sentence, and the summary was decoded using a conditional RNN language model to produce the translation.[200]

For the sake of dimensionality reduction of the updated representation in each layer, a supervised strategy selects the best informative features among features extracted by KPCA.

The main idea is to use a kernel machine to approximate a shallow neural net with an infinite number of hidden units, then use stacking to splice the output of the kernel machine and the raw input in building the next, higher level of the kernel machine.

The basic search algorithm is to propose a candidate model, evaluate it against a dataset and use the results as feedback to teach the NAS network.[204]

game-playing and decision making (backgammon, chess, poker), pattern recognition (radar systems, face identification, signal classification,[207]

object recognition and more), sequence recognition (gesture, speech, handwritten and printed text recognition), medical diagnosis, finance[208]

models of how the dynamics of neural circuitry arise from interactions between individual neurons and finally to models of how behavior can arise from abstract neural modules that represent complete subsystems.

These include models of the long-term, and short-term plasticity, of neural systems and their relations to learning and memory from the individual neuron to the system level.

specific recurrent architecture with rational valued weights (as opposed to full precision real number-valued weights) has the full power of a universal Turing machine,[222]

but also in statistical learning theory, where the goal is to minimize over two quantities: the 'empirical risk' and the 'structural risk', which roughly corresponds to the error over the training set and the predicted error in unseen data due to overfitting.

Supervised neural networks that use a mean squared error (MSE) cost function can use formal statistical methods to determine the confidence of the trained model.

A confidence analysis made this way is statistically valid as long as the output probability distribution stays the same and the network is not modified.

By assigning a softmax activation function, a generalization of the logistic function, on the output layer of the neural network (or a softmax component in a component-based neural network) for categorical target variables, the outputs can be interpreted as posterior probabilities.

Potential solutions include randomly shuffling training examples, by using a numerical optimization algorithm that does not take too large steps when changing the network connections following an example and by grouping examples in so-called mini-batches.

No neural network has solved computationally difficult problems such as the n-Queens problem, the travelling salesman problem, or the problem of factoring large integers.

Sensor neurons fire action potentials more frequently with sensor activation and muscle cells pull more strongly when their associated motor neurons receive action potentials more frequently.[225]

Other than the case of relaying information from a sensor neuron to a motor neuron, almost nothing of the principles of how information is handled by biological neural networks is known.

The motivation behind Artificial neural networks is not necessarily to strictly replicate neural function, but to use biological neural networks as an inspiration.

Alexander Dewdney commented that, as a result, artificial neural networks have a 'something-for-nothing quality, one that imparts a peculiar aura of laziness and a distinct lack of curiosity about just how good these computing systems are.

argued that the brain self-wires largely according to signal statistics and therefore, a serial cascade cannot catch all major statistical dependencies.

While the brain has hardware tailored to the task of processing signals through a graph of neurons, simulating even a simplified neuron on von Neumann architecture may compel a neural network designer to fill many millions of database rows for its connections – 

Schmidhuber notes that the resurgence of neural networks in the twenty-first century is largely attributable to advances in hardware: from 1991 to 2015, computing power, especially as delivered by GPGPUs (on GPUs), has increased around a million-fold, making the standard backpropagation algorithm feasible for training networks that are several layers deeper than before.[230]

Arguments against Dewdney's position are that neural networks have been successfully used to solve many complex and diverse tasks, ranging from autonomously flying aircraft[232]

Neural networks, for instance, are in the dock not only because they have been hyped to high heaven, (what hasn't?) but also because you could create a successful net without understanding how it worked: the bunch of numbers that captures its behaviour would in all probability be 'an opaque, unreadable table...valueless as a scientific resource'.

In spite of his emphatic declaration that science is not technology, Dewdney seems here to pillory neural nets as bad science when most of those devising them are just trying to be good engineers.

Although it is true that analyzing what has been learned by an artificial neural network is difficult, it is much easier to do so than to analyze what has been learned by a biological neural network.

Furthermore, researchers involved in exploring learning algorithms for neural networks are gradually uncovering general principles that allow a learning machine to be successful.

Advocates of hybrid models (combining neural networks and symbolic approaches), claim that such a mixture can better capture the mechanisms of the human mind.[235][236]

The simplest, static types have one or more static components, including number of units, number of layers, unit weights and topology.

Why Deep Learning Is Suddenly Changing Your Life

Over the past four years, readers have doubtlessly noticed quantum leaps in the quality of a wide range of everyday technologies.

To gather up dog pictures, the app must identify anything from a Chihuahua to a German shepherd and not be tripped up if the pup is upside down or partially obscured, at the right of the frame or the left, in fog or snow, sun or shade.

Medical startups claim they’ll soon be able to use computers to read X-rays, MRIs, and CT scans more rapidly and accurately than radiologists, to diagnose cancer earlier and less invasively, and to accelerate the search for life-saving pharmaceuticals.

They’ve all been made possible by a family of artificial intelligence (AI) techniques popularly known as deep learning, though most scientists still prefer to call them by their original academic designation: deep neural networks.

Programmers have, rather, fed the computer a learning algorithm, exposed it to terabytes of data—hundreds of thousands of images or years’ worth of speech samples—to train it, and have then allowed the computer to figure out for itself how to recognize the desired objects, words, or sentences.

“You essentially have software writing software,” says Jen-Hsun Huang, CEO of graphics processing leader Nvidia nvda , which began placing a massive bet on deep learning about five years ago.

What’s changed is that today computer scientists have finally harnessed both the vast computational power and the enormous storehouses of data—images, video, audio, and text files strewn across the Internet—that, it turns out, are essential to making neural nets work well.

“We’re now living in an age,” Chen observes, “where it’s going to be mandatory for people building sophisticated software applications.” People will soon demand, he says, “ ‘Where’s your natural-language processing version?’ ‘How do I talk to your app?

The increased computational power that is making all this possible derives not only from Moore’s law but also from the realization in the late 2000s that graphics processing units (GPUs) made by Nvidia—the powerful chips that were first designed to give gamers rich, 3D visual experiences—were 20 to 50 times more efficient than traditional central processing units (CPUs) for deep-learning computations.

Its chief financial officer told investors that “the vast majority of the growth comes from deep learning by far.” The term “deep learning” came up 81 times during the 83-minute earnings call.

I think five years from now there will be a number of S&P 500 CEOs that will wish they’d started thinking earlier about their AI strategy.” Even the Internet metaphor doesn’t do justice to what AI with deep learning will mean, in Ng’s view.

Lecture 15 | Efficient Methods and Hardware for Deep Learning

In Lecture 15, guest lecturer Song Han discusses algorithms and specialized hardware that can be used to accelerate training and inference of deep learning ...

MIT 6.S094: Introduction to Deep Learning and Self-Driving Cars

This is lecture 1 of course 6.S094: Deep Learning for Self-Driving Cars taught in Winter 2017. Course website: Lecture 1 slides: ..

Using Deep Learning to Extract Feature Data from Imagery

Vector data collection is the most tedious task in a GIS workflow. Digitizing features from imagery or scanned maps is a manual process that is costly, requiring ...

How to Make an Amazing Tensorflow Chatbot Easily

We'll go over how chatbots have evolved over the years and how Deep Learning has made them way better. Then we'll build our own chatbot using the ...

Deep Net Performance - Ep. 24 (Deep Learning SIMPLIFIED)

Training a large-scale deep net is a computationally expensive process, and common CPUs are generally insufficient for the task. GPUs are a great tool for ...

Machine learning models + IoT data = a smarter world (Google I/O '18)

With the IoT market set to triple in size by 2020, and massive increases in computing power on small devices, the intersection of IoT and machine learning is a ...

Artifical neuron mimicks function of human cells

Scientists at Karolinska Institutet have managed to build a fully functional neuron by using organic bioelectronics. This artificial neuron contain no 'living' parts, ...

Nvidia gave away its newest AI chips for free - and that's part of the reason why it's dominating th

One wouldn't think that giving away your best product is a winning business strategy, but forNvidia , it's one that's working. The graphics processing unit (GPU) ...

The Future of Deep Learning Research

Back-propagation is fundamental to deep learning. Hinton (the inventor) recently said we should "throw it all away and start over". What should we do?

Nvidia Embraces Deep Neural Nets With Volta

Nvidia Embraces Deep Neural Nets With Volta The Nvidia strategy is to disburse machine learning into every market. To accomplish ..